C5R5-lron Complexes (R = **H or Me) of Polyaromatic Hydrocarbons: Stabilization of the Monoreduced State and Large Variation of Spin Distribution as a Function of the**

Marc Lacoste and Didier Astruc

Ligand Structures

Laboratoire de Chimie Organique et Organom&allique, UA CNRS No 35, Universite de Bordeaux I, 351 Cows de la Liberation, 33405 Talence Cedex, France

Several new polyaromatic iron complexes have been synthesized with C₅H₅ or C₅Me₅ ligands and the synthesis of others is much improved using molten components; cyclic voltammetry shows a considerable stabilization of the Fel state by permethylation of the **C5H5** ligand, and a wide range of spin distribution on the polyaromatic ligand: biphenyl \sim triphenylene \leq naphthalene \leq phenanthrene \leq pyrene \leq perylene \leq corronene, is found for the **C5H5** complexes only.

Polyaromatic substrates are of importance in geochemistry,¹ cancer studies,² spectroscopy of stars,³ material science⁴ (liquid crystals, semiconductors, photochromes, and fluorescent and luminescent agents), and graph theory,⁵ among other areas, yet very few transition metal complexes are known, essentially only with $Cr(CO)₃6$ and $(C₅H₅)Fe⁺$.⁷⁻¹⁰ We report here the synthesis of a series of $(C_5Me_5)Fe^+$ polyaromatic complexes and propose an improved synthetic method of the C_5H_5 complexes in the melt. We have recorded cyclic voltammograms for both series (C_5H_5 and C_5Me_5) of

Table 1. Synthetic data for $[Fe^{II}(C_5R_5)(polyaromatic)]$ ⁺ $[PF_6]$ ⁻ complexes (R = H or Me), first reduction potentials, and spin density on the polyaromatic ligands in the mono-reduced complexes.

^a E_p values determined by cyclic voltammetry (DMF, 0.1 M Buⁿ₄N+ PF₆-, Hg cathode, -30 °C) *vs.* standard calomel electrode (S.C.E.) using ferrocene as internal reference. ^b The ratio i_a/i_c indicates chemical rate of 0.3 V s⁻¹. $d =$ spin density on the polyaromatic ligand in the monoreduced state, (see text). Differences ΔE are extracted from the same literature reference for each pair of free polyaromatic compound; there are many reports23 and the values of difference *AE* taken to calculate *d* are average values, but the variation of differences are small: pyrene-perylene, 0.41 V; pyrene-phenanthrene, 0.34 V; phenanthreneperylene, 0.72 V; naphthalene-pyrene, 0.43 V; naphthalene-perylene, 0.83 V; triphenylene-perylene, 0.72 V; triphenylene-pyrene, 0.36 V. **^d**Kindly provided by Dr. V. Guerchais. **e** Some degree of reversibility appears only at temperatures lower than -3O"C, *e.g.* -30% at -60° C on Pt. Thermodynamic potentials are thus always accessible. One only needs the chemical process C (following the electron transfer **E)** to be not too fast in order to obtain correct values of thermodynamic potentials. Unoptimized yield (only one synthesis on a 1 or 2 mmol scale).

polyaromatic iron complexes and find that (i) using 'Vlček's theory,'¹¹ large variations of spin density on the polyaromatic ligand in the monoreduced complexes are found only for the C_5H_5 series; (ii) the reversibility of the first one-electron reduction is considerably increased in the C_5Me_5 series and truly 19-electron complexes are stabilized with C_5Me_5 .

Since the first report of an iron-polyaromatic complex,⁷ $[Fe^{II}(C_5H_5)(\eta^6$ -naphthalene)] + BF₄-, by Nesmeyanov, three groups⁸⁻¹⁰ have published a number of $[Fe^{II}(C_5H_5)(\eta^6-poly$ aromatic)]+ PF_6 ⁻ compounds. Anthracene has been found to be completely hydrogenated in the 9,10-positions in its (C_5H_5) Fe complex⁹ whereas hydrogenation essentially occurs on the outer ring in C_5Me_5 analogues.¹⁰ Hydrogenation was also reported for phenanthrene and pyrene⁹ during the complexation $[(C_5H_5)_2Fe, AlCl_3, Al]$ but we find that this is not the case. In addition we find that complexation of polyaromatic compounds by $(C_5H_5)Fe^+$ proceeds best in the melt at 120-140°C, leading to much higher yields and cleaner reactions than in solution (the alkanes used as solvents most often contain aromatic components such as tetralin *etc.,* which presumably contributed to the erroneous reports mentioned above). We also made the new perylene complex which appears to be extremely light sensitive (Table 1). Its X -ray crystal12 structure will be reported elsewhere.

Since we found that aromatic compounds $(C_6H_6$ or C_6Me_6) are conveniently complexed by $(C_5Me_5)Fe^+$ using [FeII- $(C_5Me_5)(CO)_2\vert_2$ + AlCl₃¹³ at 100—110 °C, we have reported $(C_5Me_5)Fe^+$ -naphthalene and derivatives,¹⁰ although these latter reactions gave low yields. We now find that other polyaromatic compounds can similarly be complexed by $(C_5Me_5)Fe^+$, but without hydrogenation (except perylene). The new orange, crystalline complexes of phenanthrene, pyrene, triphenylene, and biphenyl are obtained in modest yields (Table 1) and are not light sensitive, contrary to all C_5H_5 analogues.[†] Comparison of cyclic voltammograms shows that the first one-electron reduction is much more chemically reversible with C_5Me_5 compounds than with the C_5H_5 analogues. This trend is especially marked with large polyaromatic compounds for which one-electron reduction of C_5H_5 compounds is highly irreversible in dimethylformamide (DMF) (Table 1).

One-electron reduction of $[Fe^{II}(C_5H_5)(\eta^6\text{-}arene)]^+$ complexes (arene = monoaromatic) is known to give Fe^I compounds having a largely metal based e^* HOMO.¹⁴ Mössbauer studies¹⁵, X-ray crystal structures,¹⁶ He I photoelectron spectroscopy,l7 1H and 13C paramagnetic n.m.r. *,18* e.s.r.,¹⁹ and electrochemical studies^{13,20} all confirm this statement, also in agreement with EHT SCC and X α calculations.²¹ Vlček's theory¹¹ can be used to calculate the ligand character *d* in the HOMO if the reduction potentials (E_i) are known for two closely related ligands $L₁$ and $L₂$ and their complexes ML_1 and ML_2 [equation (1)].

t Analytical data including ***H** and 13C n.m.r. spectra of the cations showing their structures will be reported in the full paper.

$$
d = \frac{E_{\frac{1}{2}}(ML_1) - E_{\frac{1}{2}}(ML_2)}{E_{\frac{1}{2}}(L_1) - E_{\frac{1}{2}}(L_2)}
$$
(1)

Gubin used this theory²⁰ for complexes $[Fe^{II} (C_5H_5)(\text{are}n\epsilon)$ ⁺ of simple arenes but the deduced value of **20%** would only be valid if complexes of similar d values are considered. INDO calculations by Clack and Warren²² predicted the instability of $[Fe^{I}(C_5H_5)(\eta^6-C_6H_6)]$ based on the fact that the HOMO is an e_2 ligand-based orbital rather than the metal-based e^* ₁. Although this was not confirmed for the C_6H_6 ligand, it could well become true when the enlargement of the aromatic delocalization lowers the level of the e_2 orbital. Re-using more confidently Vlček's equation indicates a wide range of spin density as a function of the polyaromatic size and structure in the C_5H_5 series (Table 1). The e.s.r. spectra of Fe^I complexes of naphthalene, phenanthrene, triphenylene, and biphenyl, [generated from the FeII cationic complexes (Table 1) and LiAlH₄ at -80° C in tetrahydrofuran (THF)] show the usual three g values close to 2 indicating a singly occupied doubly degenerate e^* state as for $[Fe^{I}(C_5H_5)(C_6H_6)]$ and related metal centred radicals. On the other hand, the e.s.r. spectra of the monoreduced complexes of perylene and coronene show only one signal around 2, a new trend not observed before, which could be attributable to $(C_5H_5)Fe^{II}$ complexes of polyaromatic radical anions. Note that these complexes are the ones which have a spin density on the polyaromatic component significantly higher than on Fe from our present data using Vlček's equation. On the other hand, Table 1 also shows that C_5Me_5 complexes always have a reduced spin density (15-30%) on the polyaromatic ligand. Thus the monoreduced C_5Me_5 compounds are all true 19-electron complexes with an essentially metal-based e_1^* HOMO, which provides kinetic stability *(cf.* concept of electron reservoir^{14,16}). This finding should open the route to the isolation of stable Fe^I polyaromatic complexes, also possibly with more than one metal. We are currently working along these lines in order to search for polyaromatic polymetal compounds with unusual physical properties.

The experimental assistance of N. Andoin, J. -G. Melin, and Dr. W. J. Bowyer is gratefully acknowledged, and the referees are thanked for their helpful comments.

Received, 19th November 1986; Com. 1645

References

- M. Evald, M. Lamotte, P. Garrigues, J. Rima, A. Veyres, R. Lapouyade, and G. Bourgeois, *Adv. Org. Geochem.,* **1983, 705.**
- **R.** G. Harvey, *Am. Sci.,* **1982, 70, 386.** (a) B. Donn, *Astrophys. J.,* **1968, 152,** L **129; (b)** B. Basile, B.
- Middeditch, and J. Oro, *Org. Geochem.,* **1983,** *5,* **211. E.** Clar, 'Polycyclic Hydrocarbons,' Academic Press, New York, **1964,** vols. **1** and **2; C.** Destrade, H. Gasperoux, P. Foucher, Nguyen Hun Tinh, J. Malthete, and J. Jacques, *J. Chim. Phys. Biol.,* **1983, 80, 137; A.** M. Levelut, *ibid.,* **1983, 80, 149.**
- (a) J. R. Dias, *Acc. Chem. Res.,* **1985, 18, 241;** (b) **E.** Clar, 'The Aromatic Sextet,' Wiley, London **1972.**
- **6** (a) R. V. Kirss and P. M. Treichel, *J. Am. Chem. SOC.,* **1986,108, 853;** (b) R. D. Rogers, J. L. Atwood, T. A. Albright, W. A. Lee, and **M.** D. Rausch, *Organometallics,* **1984, 3, 263.**
- **7** A. N. Nesmeyanov, N. A. Vol'kenau, and **I.** N. Bolesova, *Dokl. Akad. Nauk, SSSR,* **1966, 166,607.**
- **8** (a) **W. H.** Morrison, Jr., E. *Y.* Ho, and D. N. Hendrickson, *J. Am. Chem. SOC.,* **1974,96,3603;** (b) *Inorg. Chem.,* **1975,14,500.**
- **9** (a) R. G. Sutherland, **S.** C. Chen, W. J. Pannekoek, and C. C. Lee, *J. Organornet. Chem.,* **1975,101,221; (b)** *ibid.,* **1976,117,61;** (c) R. G. Sutherland, W. J. Pannekoek, and C. C. Lee, *Ann. N. Y. Acad. Sci.,* **1977,295, 192;** (d) *Can. J. Chem.,* **1978,56, 1782;** (e) C. C. Lee, K. J. Demchuk, W. J. Pannekoek, and R. G. Sutherland, *J. Organomet. Chem.,* **1978, 162,253; (f)** C. C. Lee, K. J. Demchuk, and R. G. Sutherland, *Can. J. Chem.,* **1979,57, 933;** (g) C. C. Lee, K. J. Steele, and R. G. Sutherland, *J. Organomet. Chem.,* **1980, 186,265.**
- 10 (a) V. Guerchais and D. Astruc, *J. Chem. Soc.*, *Chem. Commun.*, **1983, 1115; (b)** V. Guerchais and D. Astruc, *J. Organomet. Chem.,* **1986, 312,97.**
- **11** (a) A. **A.** Vltek, *Z. Anorg. Allg. Chem.,* **1960, 304, 109; (b)** *Collect. Czech. Chem. Commun.,* **1965,30, 952.**
- **12** G. Precigoux and F. Leroy, unpublished results.
- **13** J.-R. Hamon, D. Astruc, and P. Michaud, *J. Am. Chem.* **Soc., 1981, 103,758.**
- **14** D. Astruc, Tetrahedron Report, no. **157,** *Tetrahedron,* **1983,39, 4027;** *Acc. Chem. Res.,* **1986, 19, 377.**
- **15** J.-P. Mariot, P. Michaud, **S.** Lauer, D. Astruc, A. **X.** Trautwein, and **F.** Varret, *J. Phys. (Paris),* **1983,44, 1377.**
- 16 (a) D. Astruc, J.-R. Hamon, G. Althoff, E. Román, P. Batail, P. Michaud, J.-P. Mariot, F. Varret, and D. Cozak, J. *Am. Chem. SOC.,* **1979, 101, 5445;** (b) J.-R. Hamon, J.-Y. Saillard, A. Le Beuze, M. McGlinchey, and D. Astruc, *J. Am. Chem. Soc.*, 1982, **104,7549.**
- **17** J. C. Green, M. R. Kelly, M.-P. Payne, E. A. Seddon, D. Astruc, J.-R. Hamon, and P. Michaud, *Organometallics,* **1983,2,211.**
- **18** D. Cozak, D. Astruc, J.-R. Hamon, and P. Michaud, *Coord. Chem.,* **1980, 21, 43.**
- **19** M. V. Rajasekharan, **S.** Giezynski, J. H. Ammeter, N. Ostwald, J.-R. Hamon, P. Michaud, and D. Astruc, *J. Am. Chem. SOC.,* **1982, 104,2400.**
- **20** A. **N.** Nesmeyanov, L. **I.** Denisovitch, **S.** P. Gubin, N. A. Vol'kenau, F. **I.** Sirotkina, and **I.** N. Bolesova, *1. Organomet. Chem.,* **1969,20, 169.**
- **21** (a) A. Le Beuze and R. Lissilliour, unpublished work; (b) **J.-Y.** Saillard and H. Rabaa, unpublished work.
- **22** D. W. Clack and K. D. Warren, *J. Organomet. Chem.,* **1978,152,** C60.
- **23** (a) M. J. **S.** Dewar, J. A. Hashmall, and N. Trinajstic, J. *Am. Chem.* **SOC., 1970, 92,** *5555;* (b) R. Notoya and A. Matsuda, *J. Res. Inst. Cat., Hokkaido Univ.,* **1981, 29, 67;** (c) **S.** Bank and D. A. Juckett, *J. Am. Chem. SOC.,* **1976, 98, 7742;** (d) G. J. Hoijink, *Rec. Trav. Pays-Bas,* **1955, 74, 1525;** (e) G. J. Hoijink and J. Van Schooten, *ibid.,* **1954,73,355; (f) T.** A. Gough and **M.** E. Peover, in 'Polarography,' Proc. 3rd Int. Conf., Southampton, ed. G. J. Hills, MacMillan, New York, **1964,** vol. **2,** p. **1017;** (g) G. Brieglet, *Angew Chem., Int. Ed. Engl.,* **1964,** *3,* **617;** (h) H. Kojima and A. J. Bard, J. *Am. Chem. SOC.,* **1975,97, 6317.**
- 24 For reviews on the electrochemistry of $[Fe^{II}(C₅H₅)(arene)]$ ⁺ complexes, see: (a) N. G. Connelly and W. E. Geiger, *Adv. Organomet. Chem.,* **1984, 23, 1;** (b) W. J. Bowyer and W. E. Geiger, *Organometallics,* **1984, 3, 1979;** (c) refs. **8(b), 13, 17,** and **20.**
- **25** G. Schmitt, W. Keim, J. Fleischhauer, and U. Walbergs, *J. Organomet. Chem.,* **1978, 152, 315.**